top of page

Oral Peptide Therapeutics: Dr. Kim Virtual Integrative and Functional Medicine San Antonio TX - serving IA, IL, MO, GA, FL, TX


ree

A Comprehensive Review of Bioavailability, Molecular Mechanisms, and Clinical EvidenceYoon Hang Kim, MDwww.yoonhangkim.com

Abstract

Oral peptide delivery represents one of the most significant pharmacological challenges in modern therapeutics. Despite the inherent instability of peptides in the gastrointestinal environment, several peptides have demonstrated remarkable oral bioavailability through various mechanisms including intrinsic stability, absorption enhancer co-formulation, and specialized transport systems.

This comprehensive review examines nine peptides with documented oral efficacy: BPC-157 (body protection compound), oral semaglutide (Rybelsus®), larazotide acetate, KPV tripeptide, dihexa, thymosin beta-4, collagen peptides, cyclosporine A, and the intranasal/oral peptides semax and selank.

For each peptide, we provide detailed molecular mechanisms of action, pharmacokinetic profiles, clinical trial evidence, and therapeutic applications. This review synthesizes evidence from peer-reviewed literature, clinical trials registered with ClinicalTrials.gov, and regulatory submissions to provide clinicians and researchers with an authoritative reference on oral peptide therapeutics.

Table of Contents

  1. Introduction to Oral Peptide Delivery

  2. BPC-157 (Body Protection Compound-157)

  3. Oral Semaglutide (Rybelsus®)

  4. Larazotide Acetate

  5. KPV Tripeptide

  6. Dihexa

  7. Thymosin Beta-4

  8. Collagen Peptides

  9. Cyclosporine A

  10. Semax and Selank

  11. Comparative Analysis and Future Directions

  12. References

1. Introduction to Oral Peptide Delivery

1.1 Challenges in Oral Peptide Bioavailability

Oral delivery of peptide and protein therapeutics faces immense challenges due to the hostile gastrointestinal environment. Major barriers include:

  • Enzymatic degradation by pepsin, trypsin, chymotrypsin, and brush-border peptidases

  • Poor permeation across the intestinal epithelium due to high molecular weight and hydrophilicity

  • Variable pH conditions from stomach (pH 1-3) to intestine (pH 6-7.4)

  • Intestinal mucus layer, which impedes access to the epithelium (Aguirre et al., 2016; Hubálek et al., 2013)

Despite these challenges, over 240 peptide and protein drugs have been FDA-approved, though most require parenteral administration. Only a few peptides have achieved clinically meaningful oral bioavailability through unique structural properties or innovative formulations (Yang et al., 2022).

1.2 Strategies for Enhancing Oral Peptide Absorption

Several pharmaceutical approaches overcome oral peptide barriers:

  • Absorption enhancers: Compounds that transiently open tight junctions or increase membrane fluidity (e.g., SNAC in oral semaglutide)

  • Chemical modification: N-methylation, cyclization, incorporation of non-natural amino acids

  • Encapsulation systems: Liposomes, nanoparticles, hydrogels

  • Targeted delivery: Intestinal transporters such as PepT1 for di/tripeptide uptake

  • Intrinsic stability: Some peptides naturally resist gastric degradation

2. BPC-157 (Body Protection Compound-157)

2.1 Overview and Structure

BPC-157 is a pentadecapeptide (Gly-Glu-Pro-Pro-Pro-Gly-Lys-Pro-Ala-Asp-Asp-Ala-Gly-Leu-Val; 1,419 Da), derived from human gastric juice protein BPC, naturally secreted in the stomach (Sikiric et al., 2018).

2.2 Oral Bioavailability and Stability

BPC-157 remains intact for over 24 hours in human gastric juice, allowing oral administration without specialized carriers. Typical doses in preclinical studies: 200–500 μg/kg (Gwyer et al., 2019).

  • Half-life in plasma: <30 minutes

  • Therapeutic effects persist for weeks to months, likely via gene expression changes (Sikiric et al., 2020)

2.3 Molecular Mechanisms of Action

2.3.1 VEGFR2-PI3K-Akt-eNOS Pathway

Promotes angiogenesis, vasodilation, and tissue repair via VEGFR2 activation and NO production (Hsieh et al., 2017).

2.3.2 Src-Caveolin-1-eNOS Pathway (VEGF-Independent)

Activates eNOS independently of VEGF, explaining efficacy where VEGF signaling is impaired (Hsieh et al., 2020).

2.3.3 ERK1/2 Signaling and Cellular Migration

Stimulates endothelial and fibroblast proliferation/migration through ERK1/2 and FAK-paxillin pathways (Huang et al., 2019).

2.3.4 Anti-Inflammatory Effects

Reduces COX-2, myeloperoxidase, IL-6, TNF-α, and upregulates HO-1 and heat shock proteins (Sikiric et al., 2018).

2.3.5 Neurotransmitter Modulation

Modulates dopaminergic and serotonergic systems, restoring glutamatergic signaling (Sikiric et al., 2021).

2.4 Clinical Evidence

  • Phase I Safety Trial: Favorable safety in healthy volunteers (NCT02637284)

  • Musculoskeletal Applications: 58% sustained pain relief in knee pain case series (Vasireddi et al., 2025)

  • Interstitial Cystitis: 12 patients showed symptom improvement (Lee & Burgess, 2024)

  • Intravenous Safety: Pilot study showed no adverse effects (Lee & Burgess, 2025)

3. Oral Semaglutide (Rybelsus®)

3.1 Overview

First FDA-approved oral GLP-1 receptor agonist for type 2 diabetes (approved 2019). Combines semaglutide with SNAC, a small fatty acid derivative that facilitates absorption (Lewis & Richard, 2021).

3.2 SNAC Mechanism of Action

  1. Local pH Buffering: Protects semaglutide from gastric degradation

  2. Peptide Monomerization: Prevents oligomer formation, enhancing absorption

  3. Membrane Fluidization: Transiently increases epithelial permeability (Buckley et al., 2018; Aroda et al., 2022)

3.3 Pharmacokinetics

  • Absolute bioavailability: 0.8–1.4%

  • Absorption occurs primarily in the stomach

  • Fasting duration affects bioavailability (Granhall et al., 2019)

3.4 PIONEER Clinical Trial Program

  • Total enrollment: 9,543; 5,707 randomized to oral semaglutide

4. Larazotide Acetate

4.1 Overview

Synthetic octapeptide for celiac disease adjunct therapy; acts locally in the intestine with minimal systemic absorption (Leffler et al., 2015).

4.2 Mechanism of Action

  • Zonulin Antagonism: Prevents gluten-induced tight junction disassembly (Gopalakrishnan et al., 2012)

  • Tight Junction Protection: Maintains intestinal barrier integrity; enteric-coated for targeted delivery (Paterson et al., 2007)

4.3 Clinical Trial Evidence

  • Phase 2b Trial: 26% reduction in symptomatic days; safe and well-tolerated (Leffler et al., 2015)

  • Phase 3 CeDLara Trial: Discontinued due to insufficient effect size (ClinicalTrials.gov, 2022)

5. KPV Tripeptide

5.1 Overview

Tripeptide Lys-Pro-Val, derived from α-MSH; anti-inflammatory via PepT1 transporter (Dalmasso et al., 2008).

5.2 Mechanism of Action

  • PepT1-Mediated Transport: High-affinity uptake at inflamed intestinal sites

  • NF-κB Inhibition: Prevents pro-inflammatory gene transcription

  • MAP Kinase Inhibition: Blocks ERK1/2, JNK, p38 phosphorylation

5.3 Preclinical Evidence

Reduces colitis severity in mouse models; nanoparticle delivery enhances colonic targeting (Xiao et al., 2017)

6. Dihexa

6.1 Overview

Synthetic hexapeptide, promotes cognitive function and neurogenesis (Benoist et al., 2014).

6.2 Mechanism of Action

  • HGF Mimetic: Binds and activates c-Met receptor

  • Synaptogenesis: Promotes dendritic spine formation and neurite outgrowth

  • Neurogenesis: Potent effects compared to BDNF

6.3 Preclinical Evidence

Rat studies show cognitive improvement; human trials limited

7. Thymosin Beta-4

7.1 Overview

43-amino-acid peptide involved in tissue repair, angiogenesis, and anti-inflammatory responses (Goldstein & Kleinman, 2012).

7.2 Mechanism of Action

  • Actin binding and cytoskeletal regulation

  • Cell migration, angiogenesis

  • Anti-inflammatory and anti-apoptotic effects

7.3 Clinical Evidence

Accelerated healing in pressure ulcers, venous stasis ulcers, and epidermolysis bullosa

8. Collagen Peptides

8.1 Overview

Hydrolyzed collagen fragments (2–5 kDa) with improved oral bioavailability (Virgilio et al., 2024).

8.2 Absorption and Bioavailability

  • Absorbed as intact di- and tripeptides (~63.4%)

  • Key metabolites: Pro-Hyp, Hyp-Gly, Gly-Pro-Hyp

  • Hydroxyproline confers stability

8.3 Clinical Evidence

Daily doses of 2.5–15 g improve skin, joint health, and wound healing (Virgilio et al., 2024; Choi et al., 2014)

9. Cyclosporine A

9.1 Overview

11-amino-acid cyclic peptide immunosuppressant; oral bioavailability 20–70% despite >500 Da molecular weight (Wang & Craik, 2016).

9.2 Structural Features

  • N-Methylation, non-canonical amino acids

  • Chameleonic conformational behavior

  • Cyclic backbone protects against degradation

10. Semax and Selank

10.1 Semax

  • Synthetic heptapeptide ACTH(4-10) analogue

  • Upregulates BDNF and NGF, enhances dopaminergic/serotonergic systems

  • Intranasal administration more potent for cognitive effects

10.2 Selank

  • Synthetic heptapeptide tuftsin analogue

  • Modulates GABAergic neurotransmission, anxiolytic and nootropic

  • Increases BDNF mRNA and protein (Vasileva et al., 2020)

11. Comparative Analysis and Future Directions

11.1 Mechanisms Enabling Oral Bioavailability

  • Intrinsic stability: BPC-157

  • Absorption enhancers: Oral semaglutide

  • Local action: Larazotide

  • Active transport: KPV

  • Hydroxyproline protection: Collagen peptides

  • Structural modification: Cyclosporine A

11.2 Regulatory Considerations

  • Approved: Oral semaglutide (Rybelsus®), cyclosporine A

  • Phase 2/3: Larazotide, Tβ4

  • Research use: BPC-157, KPV, dihexa, semax/selank

11.3 Future Directions

  • Novel absorption enhancers beyond SNAC

  • Nanoparticle/hydrogel delivery systems

  • Rational peptide design for oral bioavailability

  • Microbiome-based delivery strategies



Meet Yoon Hang Kim MD Integrative & Functional Medicine Expert

12. References

(APA format preserved, hyperlinks retained)

Aguirre, T. A. S., Teijeiro-Osorio, D., Rosa, M., Coulter, I. S., Alonso, M. J., & Brayden, D. J. (2016). Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Advanced Drug Delivery Reviews, 106, 223-241. https://doi.org/10.1016/j.addr.2016.02.004

Aroda, V. R., Blonde, L., & Engström, P. G. (2022). A new era for oral peptides: SNAC and the development of oral semaglutide for the treatment of type 2 diabetes. Reviews in Endocrine and Metabolic Disorders, 23(5), 979-994. https://doi.org/10.1007/s11154-022-09735-8

Benoist, C. C., Kawas, L. H., Zhu, M., Bhagat, S., Bhakta, D., Lin, G., ... Wright, J. W. (2014). The procognitive and synaptogenic effects of angiotensin IV-derived peptides are dependent on activation of the hepatocyte growth factor/c-Met system. Journal of Pharmacology and Experimental Therapeutics, 351(2), 390-402. https://doi.org/10.1124/jpet.114.218735

Buckley, S. T., Bækdal, T. A., Vegge, A., Maarbjerg, S. J., Pyke, C., Ahlgren, J., ... Falk, M. (2018). Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Science Translational Medicine, 10(467), eaar7047. https://doi.org/10.1126/scitranslmed.aar7047

Choi, S. Y., Ko, E. J., Lee, Y. H., Kim, B. G., Shin, H. J., Seo, D. B., ... Kim, M. N. (2014). Effects of collagen tripeptide supplement on skin properties: A prospective, randomized, controlled study. Journal of Cosmetic and Laser Therapy, 16(3), 132-137. https://doi.org/10.3109/14764172.2013.854119

Dalmasso, G., Charrier-Hisamuddin, L., Nguyen, H. T. T., Yan, Y., Sitaraman, S., & Bhatt, D. (2008). PepT1-mediated tripeptide KPV uptake reduces intestinal inflammation. Gastroenterology, 134(1), 166-178. https://doi.org/10.1053/j.gastro.2007.10.026

Dolotov, O. V., Karpenko, E. A., Inozemtseva, L. S., Seredenina, T. S., Levitskaya, N. G., Rozyczka, J., ... Myasoedov, N. F. (2006). Semax, an analogue of adrenocorticotropin (4-10), binds specifically and increases levels of brain-derived neurotrophic factor protein in rat basal forebrain. Journal of Neurochemistry, 97(Suppl 1), 82-86. https://doi.org/10.1111/j.1471-4159.2006.03766.x

Goldstein, A. L., & Kleinman, H. K. (2012). Thymosin β4: A multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opinion on Biological Therapy, 12(1), 37-51. https://doi.org/10.1517/14712598.2012.637506

Gopalakrishnan, S., Durai, M., Kitchens, K., Tamiz, A. P., Somerville, R., Ginski, M., ... Bhati, A. P. (2012). Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides, 35(1), 86-94. https://doi.org/10.1016/j.peptides.2012.02.015

Granhall, C., Donsmark, M., Blicher, T. M., Golor, G., Søndergaard, F. L., Thomsen, M., & Bækdal, T. A. (2019). Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. Clinical Pharmacokinetics, 58(6), 781-791. https://doi.org/10.1007/s40262-018-0728-4

Gwyer, D., Wragg, N. M., & Wilson, S. L. (2019). Gastric pentadecapeptide body protection compound BPC 157 and its role in accelerating musculoskeletal soft tissue healing. Cell and Tissue Research, 377(2), 153-159. https://doi.org/10.1007/s00441-019-03016-8

Hsieh, M. J., Lee, C. H., Chueh, H. Y., Chang, G. J., Huang, H. Y., Lin, Y., & Peng, Y. J. (2020). Modulatory effects of BPC 157 on vasomotor tone and the activation of Src-Caveolin-1-endothelial nitric oxide synthase pathway. Scientific Reports, 10, 17078. https://doi.org/10.1038/s41598-020-74022-y

Hsieh, M. J., Liu, H. T., Wang, C. N., Huang, H. Y., Lin, Y., Ko, Y. S., ... & Peng, Y. J. (2017). Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation. Journal of Molecular Medicine, 95(3), 323-333. https://doi.org/10.1007/s00109-016-1488-y

Hubálek, F., Refsgaard, H. H. F., Gram-Nielsen, S., Madsen, P., Nishimura, E., Münzel, M., ... & Hjortkjær, R. K. (2013). Approaches for enhancing oral bioavailability of peptides and proteins. International Journal of Pharmaceutics, 447(1-2), 75-93. https://doi.org/10.1016/j.ijpharm.2013.02.030

Huang, T., Zhang, K., Sun, L., Xue, X., Zhang, C., Shu, Z., ... & Yang, W. (2019). Body protective compound-157 enhances tendon-bone healing in a rotator cuff tear model. Connective Tissue Research, 60(3), 241-249. https://doi.org/10.1080/03008207.2018.1505530

Lee, E., & Burgess, K. (2024). Treatment of interstitial cystitis with BPC-157: A case series. Alternative Therapies in Health and Medicine, 30(3), 48-52.

Lee, E., & Burgess, K. (2025). Safety of intravenous infusion of BPC157 in humans: A pilot study. Alternative Therapies in Health and Medicine, 31, 20-24.

Leffler, D. A., Kelly, C. P., Green, P. H. R., Fedorak, R. N., DiMarino, A., Perrow, W., ... Murray, J. A. (2015). Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: A randomized controlled trial. Gastroenterology, 148(7), 1311-1319.e6. https://doi.org/10.1053/j.gastro.2015.02.008

Lewis, A. L., & Richard, J. (2021). Development and approval of rybelsus (oral semaglutide): Ushering in a new era in peptide delivery. Therapeutic Delivery, 12(5), 1-4. https://doi.org/10.4155/tde-2021-0048

Oesser, S., Adam, M., Babel, W., & Seifert, J. (1999). Oral administration of 14C labelled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). The Journal of Nutrition, 129(10), 1891-1895. https://doi.org/10.1093/jn/129.10.1891

Paterson, B. M., Lammers, K. M., Arrieta, M. C., Fasano, A., & Meddings, J. B. (2007). The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: A proof of concept study. Alimentary Pharmacology & Therapeutics, 26(5), 757-766. https://doi.org/10.1111/j.1365-2036.2007.03413.x

Sikiric, P., Seiwerth, S., Rucman, R., Turkovic, B., Rokotov, D. S., Brcic, L., ... Stupnisek, M. (2018). Brain-gut axis and pentadecapeptide BPC 157: Theoretical and practical implications. Current Neuropharmacology, 16(1), 19-29. https://doi.org/10.2174/1570159X15666170703101926

Sikiric, P., Hahm, K. B., Blagaic, A. B., Tvrdeic, A., Pavlov, K. H., Petrovic, A., ... Seiwerth, S. (2020). Stable gastric pentadecapeptide BPC 157 and wound healing. Frontiers in Pharmacology, 11, 1050. https://doi.org/10.3389/fphar.2020.01050

Sikiric, P., Rucman, R., Turkovic, B., Seiwerth, S., Hahm, K. B., Blagaic, A. B., ... & Balenovic, I. (2021). Novel cytoprotective mediator, stable gastric pentadecapeptide BPC 157: Vascular recruitment and gastrointestinal tract healing. Current Pharmaceutical Design, 27(16), 1942-1953. https://doi.org/10.2174/1381612826666201014124146

Vasileva, E. V., Kondrakhin, E. A., Abdullina, A. A., Kudrin, V. S., Narkevich, V. B., & Kovalev, G. I. (2020). Predominance of nootropic or anxiolytic effects of selank, semax, and noopept peptides depending on the route of administration to BALB/c and C57BL/6 mice. Neurochemical Journal, 14, 268-278. https://doi.org/10.1134/S1819712420030113

Vasireddi, N., Hahamyan, H., Salata, M. J., Karns, M. R., & Voos, J. E. (2025). Emerging use of BPC-157 in orthopaedic sports medicine: A systematic review. Orthopaedic Journal of Sports Medicine, 13(1). https://doi.org/10.1177/23259671251233916

Veljaca, M., Lesch, C. A., Pllana, R., Sanchez, B., Chan, K., & Guglietta, A. (1995). BPC-15 reduces trinitrobenzene sulfonic acid-induced colonic damage in rats. Journal of Pharmacology and Experimental Therapeutics, 272(1), 417-422.

Virgilio, N., Schuch, B., Verburg, S., Post, J. A., Meijer, K., Breeuwsma, S., ... de Groot, A. (2024). Absorption of bioactive peptides following collagen hydrolysate intake: A randomized, double-blind crossover study in healthy individuals. Frontiers in Nutrition, 11, 1416643. https://doi.org/10.3389/fnut.2024.1416643

Wang, C. K., & Craik, D. J. (2016). Cyclic peptide oral bioavailability: Lessons from the past. Biopolymers (Peptide Science), 106(6), 901-909. https://doi.org/10.1002/bip.22878

Xiao, B., Xu, Z., Viennois, E., Zhang, Y., Zhang, Z., Zhang, M., ... Merlin, D. (2017). Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Molecular Therapy, 25(7), 1628-1640. https://doi.org/10.1016/j.ymthe.2016.11.020

Yang, Z., Zhang, L., Wei, J., Li, S., Liu, Y., Ding, L., ... Li, Q. (2022). Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies. Theranostics, 12(3), 1419-1439. https://doi.org/10.7150/thno.67284Disclaimer

This review is intended for educational and research purposes only. Regulatory status varies among peptides. Oral semaglutide (Rybelsus®) and cyclosporine A are FDA-approved; others are investigational, research chemicals, or supplements. Consult current prescribing information before use. This content is not medical advice.

 
 
 

Comments


bottom of page